Erudite
Introduction
Erudite will download articles from Instapaper or Pocket, convert them to an appropriate format such as EPUB or MOBI, and add them to your Calibre ebook library. It is a command-line driven tool.
Home Page • Downloads • GitHub
Erudite is distributed under the Apache License 2.0.
How It Works
Erudite takes articles from a source (such as Instapaper or Pocket) and uses a HTML template file and a set of configuration properties to produce the appropriately formatted ebook files and (optionally) add them to your Calibre ebook library.
Session File
The session file holds the details necessary for accessing your Instapaper or Pocket session.
Configuration
The configuration file is a standard set of key/value properties that tell Erudite how to process each article. Erudite first produces a HTML version of the article in an easy to read format, then uses Calibre’s ebook-convert program to convert to the desired file type such as EPUB or MOBI. It can then either save the file to a folder, or add it to a Calibre ebook library.
Template
This is a HTML template used to produce the readable version of an article. This is optional as Erudite has an default HTML template it normally will use, but the option is available for advanced customisation.
Usage
Run the erudite.jar file with no arguments in order to see the full usage.
java -jar erudite.jar
The full usage is shown here and may look a little intimidating, but we will break it down for each function later:
Erudite 2.2
Initialise a session, you must do this before you can process anything.
usage: init <source> [<file>]
<source>: Where you'll be pulling articles from.
One of "instapaper" or "pocket".
<file>: Where to save the session data.
Default is /home/user/.erudite/session.dat
Produce a fully commented configuration file.
usage: config [<file>]
<file>: Where to save the configuration file.
Default is /home/user/.erudite/session.properties
Produce a copy of the internally used template file.
usage: template [<file>]
<file>: Where to save the template file.
Default is /home/user/.erudite/session.html
Process articles from a session.
usage: process [-v | -q | -S] [-c <file>] [-s <file>]
-c <arg> Configuration file to use.
-q Quiet output (only on errors).
-s <arg> Session file to use.
-S Silent output.
-v Verbose output.
List articles to be processed from a session.
usage: list [-v | -q | -S] [-c <file>] [-s <file>]
-c <arg> Configuration file to use.
-s <arg> Session file to use.
-v Verbose output.
Test the title munging in the configuration file
usage: titletest [-c <file>] <title>
-c <arg> Configuration file to use.
Default session file: /home/user/.erudite/session.dat
Default configuration file: /home/user/.erudite/session.properties
Default template file (optional): /home/user/.erudite/session.html
Initialise a Session
Before being able to process articles, you will need to initialise your session with one of Instapaper or Pocket.
You can generate this by running:
java -jar erudite.jar init instapaper
or
java -jar erudite.jar init pocket
For an Instapaper session, you will be prompted for your email and password. Neither of these are stored in the session file, only the session cookies (just like a browser).
Pocket is a little more involved. Erudite will need your user ID and password, and will also directed to the web site to generate an API key and grant permission to Erudite to access your account. Neither the user ID or password are stored in the session file, only the session cookies (just like a browser).
Create your Configuration
Before being able to process articles, you will need to create a configuration file for your session.
You can generate a fully annotated configuration file by running:
java -jar erudite.jar config
This saves the file in the default location (run java -jar erudite.jar and look at the last few lines to see where this is). Open this with your preferred text editor, read through the documentation provided within and edit to suit your needs.
Process Articles
To download articles and convert them, run:
java -jar erudite.jar process
Other Things You Can Do
From the command line, you can also:
List Articles To Be Processed
To list the articles waiting at the web service to be processed, run:
java -jar erudite.jar list
Create a HTML Template
If you need to use a custom HTML template, start with the one used by Erudite by running:
java -jar erudite.jar template
or
java -jar erudite.jar template mytemplate.html
The first one will save the file in the default location (run java -jar erudite.jar and look at the last few lines to see where this is). The second one saves the file to the specified location. Edit the template to suit your needs and refer to it from the configuration file if necessary.
Test Your Title Munging Fu
In the annotated configuration file you are introduced to title munging. Sometimes the titles for articles need a little bit of cleaning up before being used in the produced document. Title mungers use regular expressions to perform substitutions to make titles more readable or sortable.
e.g., Change “Coding Horror: New Programming Jargon” to “New Programming Jargon « Coding Horror” so it sorts by the name of the article, not the name of the site it was from.
Refer to the annotated configuration file to see how title munging works.
After editing the title munging in your configuration file, you can test it works as expected by running:
java -jar erudite titletest This is my test title
Wrap the title in quotes if necessary for your command line.
A note of default file locations.
By default, Erudite will store its data files in the folder ~/.erudite for Linux, and %HOMEPATH%\erudite for Windows. The default session file is called session.dat.
By default the configuration and template files have the same path and name as the session file, but with a .properties and .html extension respectively.
Annotated Configuration File
Below is a fully annotated sample configuration file.
##
This is a sample configuration file for Erudite.
http://evanmclean.com/software/erudite/
##
Include Another Configuration File.
#
This is useful to share common settings between several different
sessions. Good candidates for a common settings file are things
like title munging, number of worker threads, program paths, output
profiles and calibre library paths.
#
If the variable has only a file name, no folder, then it will be
searched for in the current folder and then the user data folder
(e.g., ~/.erudite).
#include = common.properties
##
A Note On Special Characters.
#
The configuration file uses the backslash to make it easier to
insert special characters in values. These generally follow the
conventions of Java. \n for a new line, \t for a tab. \u0020 for a
Unicode character. However because of this, to insert a single
backslash, you need to use two: \\
#
For file paths under Windows you can use forward slashes if you
prefer, so C:\\Users\\fred\\erudite and C:/Users/fred/erudite are
the same.
##
Title Munging
#
Sometimes the titles for articles need a little bit of cleaning up
before being used for the produced document. For example, many web
sites use titles along the lines of "Web site name: Article name".
Generally I prefer the article name to come first so it would be
nice to have erudite swap these around. Below are some examples.
#
Title mungers follow a standard regular expression syntax of
/regex/substitute/
The substitute can contain \\1 to \\9 to insert captured groups
from the expression.
#title = /Coding Horror:\\s+(.+)/\\1 « Coding Horror/
#title = /High Scalability - High Scalability -\\s+(.+)/\\1 « High Scalability/
Swap anything with the format "site name » article name"
to "article name « site name"
#title = /(.*)\\s+»\\s+(.*)/\\2 « \\1/
##
Worker Threads
#
Erudite can process several articles in parallel, making overall
processing time shorter. Generally setting the number of worker
threads to the number of CPU cores is a good place to start. I
wouldn't set it to more than twice the number of cores. By default
Erudite processes articles one at a time (one worker thread.)
#worker.threads = 4
##
Image Handling
#
Erudite downloads the images referenced in articles so they can be
included while processing. The following variables control how
images are handled.
By default, if there is an error downloading an image, the article
will not be processed and an error is displayed. Set this variable
to true to ignore the error and remove the image tag from the HTML
instead.
#image.ignore.errors = true
Use the two variables below to remove images that are less then a
certain width and/or height. This is helpful to eliminate less
useful things like web bugs.
#image.min.width = 5
#image.min.height = 5
Convert all images to PNG. This can reduce the possibility of weird
images (such as animated gifs) from making a document unloadable by
your ereader device. By default Erudite just uses images 'as is'.
#image.to.png = true
Cache Control. The image handler can cache images for reuse for
each processor (or if multiple articles use the same image). You
can limit either by the total number of images the cache will
retain, or the total number of megabytes of data. By default
Erudite will cache 100MB of images.
ONLY set one of these, not both.
#image.cache.max.members = 100
#image.cache.max.mb = 100
##
Templates
#
Erudite uses a HTML template to create the full HTML document from
the content of the article pulled from Instapaper or other source.
By default Erudite looks for a template in the same folder and with
the same file name as the session file, but with a ".html"
extension instead. If it does not find this, it uses an internally
stored template.
#
If neither of these suit, you can specify the name of a template
file to be used by all processors here. (You can also specify this
for each processor for fine-grained control if you need it.)
#
If the variable has only a file name, no folder, then it will be
searched for it in the current folder and then the user data folder
(e.g., ~/.erudite).
template = template.html
##
Footnotes
#
By default Erudite generates a list of the links that are in the
article. If you don't want this for some reason set the variable
below to false. (You can also specify this for each processor for
fine-grained control if you need it.)
footnotes = false
##
Hnsearch
#
If set to true, Erudite will use hnsearch.com to look up the URL of
the article and see if it has a discussion thread on Hacker News.
If so, it will include a link to the discussion thread in the
document. (You can also specify this for each processor for
fine-grained control if you need it.)
hnsearch = true
##
Folder For Saved Documents
#
For processors that save the processed article (instead of adding
them to Calibre's library) you can specify the folder here. (You
can also specify this for each processor for fine-grained control
if you need it.)
saveto = /home/fred/my-ebooks
##
ebook-convert
#
ebook-convert is one of the command-line tools provided by the
Calibre ebook management software. It is used by Erudite for
converting articles from HTML to EPUB, MOBI or any other format
ebook-convert will handle.
#
The following variables relate to Erudite's use of ebook-convert.
Erudite will search the operating system's PATH environment
variable as well a few other typical locations for the location of
the ebook-convert executable. However if it cannot find it, you can
specify the full path for it here.
#ebookconvert.prog = C:/Program Files/Caibre 2/ebook-convert.exe
#ebookconvert.prog = /opt/calibre/ebook-convert
The output profile you want to use with ebook-convert depends on
your target ereader device. See here for possible values:
http://manual.calibre-ebook.com/cli/ebook-convert.html#cmdoption-ebook-convert--output-profile
#
By default Erudite will not specify any output profile to
ebook-convert. (You can also specify one for each processor for
fine-grained control if you need it.)
#ebookconvert.outputprofile = generic_eink
##
calibredb
#
calibredb is one of the command-line tools provided by the Calibre
ebook management software. It is used by Erudite to add the
processed document to your ebook library.
#
The following variables relate to Erudite's use of calibredb
Erudite will search the operating system's PATH environment
variable as well a few other typical locations for the location of
the calibredb executable. However if it cannot find it, you can
specify the full path for it here.
#calibredb.prog = C:/Program Files/Calibre 2/calibredb.exe
#calibredb.prog = /opt/calibre/calibredb
By default, the calibre add command uses the library stored in
Calibre's settings. You can explicitly specify the library folder
you want to use here. (You can also specify this for each processor
for fine-grained control if you need it.)
See here for more details:
#http://manual.calibre-ebook.com/cli/calibredb.html#cmdoption--library-path
#calbiredb.library = /home/fred/my-ebook-library
##
Instapaper Settings
The folder on Instapaper to read articles from. If not set, the
Read Later (default) folder is read.
#folder = ToDownload
Once Erudite has successfully processed an article, you can decide
what you will do with the article on Instapaper. You have one of
four options:
#
* Do nothing (the default).
* Archive it.
* Remove it (delete).
* Move it to another folder.
#
Typically you should do something or Erudite will just process it again
the next time it runs.
#on.complete = none
#on.complete = archive
#on.complete = remove
#on.complete = move:Downloaded
You can also decide what to do with an article on Instapaper if
Erudite experiences an error while processing it. You have all the
same options as for on.complete but moving it to another folder is
probably what you want to do.
#on.error = move:Erudite Error
##
Pocket Settings
By default, Erudite will process all articles in Pocket that have not
been archived. You can filter this based on the presence or absence of a
tag, or if an article is flagged as a favourite or not. Usually you
will use this in combination with an on.complete and on.error action
(see below) to avoid processing the same articles again on subsequent
runs.
To only process articles flagged as a favourite:
#filter = favourite
Or, to process articles that are not flagged as a favourite:
#filter = !favourite
To only process articles with the tag "To Erudite":
#filter = To Erudite
To process all articles that do not have the tag "No Erudite"
#filter = !No Erudite
It is possible to combine favourite state and tags:
#filter = favourite, !Erudite Error
#filter = To Erudite, !Erudite Error
#filter = !Erudite Processed, !Erudite Error
Once Erudite has successfully processed an article, you can decide what
you will do with the article on Pocket. You have one of
five options:
#
* Do nothing (the default).
* Archive it.
* Remove it (delete).
* Favourite or un-favourite it.
* Add or remove a tag.
#
Typically you should do something or Erudite will just process it again
the next time it runs.
#on.complete = none
#on.complete = archive
#on.complete = remove
#on.complete = favourite
#on.complete = unfavourite
#on.complete = tag:Erudite Processed
#on.complete = untag:To Erudite
You can also decide what to do with an article on Pocket if Erudite
experiences an error while processing it. You have all the same options
as for on.complete but tagging it to indicate an error is probably what
you want to do.
#on.error = tag:Erudite Error
##
##
Processors
#
The bread and butter of Erudite. Each article is ran through one or
more processors. You can use processors to:
#
* Save the article as a HTML file.
* Add the article to your Calibre ebook library as a HTML file.
* Convert the article to an ebook format such as EPUB or MOBI
and either save it or add it to your Calibre ebook library.
#
Processors are declared as a comma separated list of identifiers.
The identifier then becomes the prefix of the variables used to
configure the processor. That way, you can have a bunch of
processors configured, and just pick which one you want to use with
one line. Example processor configurations are below.
This is the list of processors to run for each article.
#processors = epub, savehmtl
##
Common processor configuration variables
Type: The type of processor. One of:
#
save
Saves the HTML to a file. Images are stored in a matching
"_files" suffixed folder.
#
calibre
Save the HTML file directly to your Calibre ebook library.
#
ebookconvert (or ebook-convert)
Convert the article from HTML to an ebook format such as
EPUB or MOBI.
#procid.type = save
#procid.type = calibre
#procid.type = ebookconvert
Footnotes (optional): By default Erudite generates a list of the
links that are in the article. You can set this for all processors
with the "footnotes" variable declared above, and/or on an
individual basis as shown below.
#procid.footnotes = false
#procid.footnotes = true
Hnsearch (optional): If set to true, Erudite will use hnsearch.com
to look up the URL of the article and see if it has a discussion
thread on Hacker News. If so, it will include a link to the
discussion thread in the document. You can set this for all
processors with the "hnsearch" variable declared above, and/or on
an individual basis as shown below.
#procid.hnsearch = true
#procid.hnsearch = false
Template (optional): See the explanation for the "template"
variable above. You can set a specific template to be used just
for this processor instead of the default.
#procid.template = template.html
##
Saving a HTML File
#
This type of processor will save the article as a HTML file in a
nominated folder. The name of the file will be based on the title
of the article and be ensured to be unique (it wont overwrite
existing files). If there are any images, a folder with the same
base name as the file and the suffix "_files" will be used to store
them.
#savehtml.type = save
The folder to save the HTML files to. If this is not set then the
processor will use the value of the "saveto" common variable
described above. If neither is defined then an error will occur.
#savehtml.saveto = /home/fred/my-ebooks
Optional, common processor variables described above.
#savehtml.footnotes = true
#savehtml.hnsearch = true
#savehtml.template = template.html
##
Add HTML To Your Calibre Ebook Library
#
This type of processor will add the article in HTML format to your
Calibre ebook library.
#addhtml.type = calibre
(Optional) Explicitly set the library folder you want to use. See
the description of "calibredb.library" above for more details.
#addhtml.library = /home/fred/my-ebook-library
(Optional) The name you want to use as the author for this article
in your library's meta-data. By default Calibre uses "Unknown".
#addhtml.author = Someone On The Web
(Optional) Zero or more extra options to pass to the calibredb
command line tool, which is used to add the document to the ebook
library. You'll want familiarity with the calibredb add command to
use this:
http://manual.calibre-ebook.com/cli/calibredb.html#calibredb-add
#addhtml.option = --duplicates
#addhtml.option = --tags=viaErudite
Optional, common processor variables described above.
#addhtml.footnotes = true
#addhtml.hnsearch = true
#addhtml.template = template.html
##
Convert to an Ebook Format
#
Convert the article from HTML to an ebook format such as EPUB or
MOBI. After conversion the document can either be saved to a folder
or added to your Calibre ebook library.
#
Some familiarity with Calibre's ebook-convert tool would be handy
to use this with confidence:
http://manual.calibre-ebook.com/cli/ebook-convert.html
#conv.type = ebookconvert
The target file format. This is the extension on the end of the
file name that would be produced. It can be any format that
ebook-convert handles as an output.
http://manual.calibre-ebook.com/cli/ebook-convert.html
#conv.filetype = pdf
(Optional) The output profile to be used. This depends on your
target ereader device. See the description of
"ebookconvert.outputprofile" above for more details.
#conv.outputprofile = generic_eink
(Optional) The name you want to use as the author for this article
in your document's meta-data. By default Calibre uses "Unknown".
#conv.author = Someone On The Web
(Optional) When producing an EPUB file, this wrap hack allows
better wrapping of long URLs by injecting zero width spaces into
the document. This may not work for some ereader devices so try it
and see.
#conv.wrap.hack = true
(Optional) Zero or more extra options to pass to the ebook-convert
command line tool, which is used to covert the HTML text of the
article to the desired format. You'll want familiarity with the
ebook-convert command to use this:
http://manual.calibre-ebook.com/cli/ebook-convert.html
#conv.option = --asciiize
#conv.option = --change-justification=left
Optional, common processor variables described above.
#conv.footnotes = true
#conv.hnsearch = true
#conv.template = template.html
What to do with the document once it has been converted? You can
either save it to a folder or add it to your Calibre ebook library.
#conv.then = save
#conv.then = calibre
When saving, you can specify the folder to save the document to. If
this is not set then the processor will use the value of the
"saveto" common variable described above. If neither is defined
then an error will occur.
#conv.saveto = /home/fred/my-ebooks
For adding to your library you can use the following to pass
configuration settings to the calibredb add command:
#
(Optional) Explicitly set the library folder you want to use. See
the description of "calibredb.library" above for more details.
#conv.library = /home/fred/my-ebook-library
(Optional) Zero or more extra options to pass to the calibredb
command line tool, which is used to add the document to the ebook
library. You'll want familiarity with the calibredb add command to
use this:
http://manual.calibre-ebook.com/cli/calibredb.html#calibredb-add
#conv.then.calibredb.option = --duplicates
##
Example Conversions
#
The following will convert a document to EPUB and add it to your
Calibre ebook library.
epub.type = ebookconvert
epub.filetype = epub
epub.outputprofile = generic_eink
epub.author = Someone on the Web
epub.wrap.hack = true
epub.option = --change-justification=left
epub.option = --dont-split-on-page-breaks
epub.option = --no-default-epub-cover
epub.then = calibre
The following will convert a document to MOBI and save it to a
folder.
mobi.type = ebookconvert
mobi.filetype = mobi
epub.outputprofile = kindle
mobi.author = Someone on the Web
mobi.option = --change-justification=left
mobi.then = save
mobi.saveto = /home/fred/my-ebooks